МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования Красноярского края

Муниципальное образование Богучанского района Красноярского края

МКОУ Таежнинская школа №7

РАССМОТРЕНО	СОГЛАСОВАНО	УТВЕРЖДЕНО
Руководитель МО предметов естественнонаучного цикла	Заместитель директора по УВР	Директор школы
Г.А. Курочкина Протокол №1 от «29» 08 2023 г.	К.С. Ивлева Приказ №80 от «29» 08 2023 г.	H.O. Евдокимова Приказ №80-од от «29» 08 2023 г.

РАБОЧАЯ ПРОГРАММА

учебного предмета «Физика. Базовый уровень»

для обучающихся 11 класса

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по физике (базовый уровень) составлена на основе следующих нормативных документов:

- ФГОС СОО, утвержденный Приказом Министерства образования и науки РФ от 31 мая 2021 г. № 287;
- основной образовательной программы основного общего образования
 МКОУ Таежнинской школы № 7;
- учебного плана МКОУ Таежнинской школы № 7 на 2021-2022
 учебный год;
 - календарного учебного графика на 2023-2024 учебный год;
- примерной программы учебного курса (Шаталина А.В., Рабочие программы, Физика, 10-11 классы. М.: Просвещение, 2017.), комплекта учебников Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский / Под ред. Н.А.Парфентьевой, Физика. 11 класс. Базовый уровень.— М.: Просвещение, 2021.).

Физика, как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Школьный курс физики — системообразующий для естественно-научных учебных предметов, поскольку физические законы лежат в основе содержания химии, биологии, физической географии и астрономии.

Изучение физики является необходимым не только для овладения основами одной из естественных наук, являющейся компонентой общего образования. Знание физики в её историческом развитии помогает человеку понять процесс формирования других составляющих современной культуры. Гуманитарное значение физики как обязательной части общего образования состоит в том, что она способствует становлению миропонимания и развитию научного способа мышления, позволяющего объективно оценивать сведения об окружающем мире. Кроме того, овладение основными физическими знаниями на базовом уровне необходимо практически каждому человеку в современной жизни.

Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не столько передаче суммы готовых знаний, сколько знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению.

На изучение учебного предмета отводится:

11 класс – по 2 часа в неделю, 68 часов в год

Изучение физики в 11 классах направлено на достижение следующих целей:

• формирование у обучающихся уверенности в ценности образования, значимости физических знаний для каждого человека независимо от его профессиональной деятельности;

- овладение основополагающими физическими закономерностями, законами и теориями; расширение объёма используемых физических понятий, терминологии и символики;
- приобретение знаний о фундаментальных физических законах, лежащих в основе современной физической картины мира, о наиболее важных открытиях в области физики, оказавших определяющее влияние на развитие техники и технологии; понимание физической сущности явлений, наблюдаемых во Вселенной;
- овладение основными методами научного познания природы, используемыми в физике (наблюдение, описание, измерение, выдвижение гипотез, проведение эксперимента); овладение умениями обрабатывать данные эксперимента, объяснять полученные результаты, устанавливать зависимости между физическими величинами в наблюдаемом явлении, делать выводы;
- отработка умения решать физические задачи разных уровней сложности;
- приобретение: опыта разнообразной деятельности, опыта познания и самопознания; умений ставить задачи, решать проблемы, принимать решения, искать, анализировать и обрабатывать информацию; ключевых навыков (ключевых компетенций), имеющих универсальное значение: коммуникации, сотрудничества, измерений, эффективного и безопасного использования различных технических устройств;
- освоение способов использования физических знаний для решения практических задач, объяснения явлений окружающей действительности, обеспечения безопасности жизни и охраны природы;
- развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний с использованием различных источников информации и современных информационных технологий; умений формулировать и обосновывать собственную позицию по отношению к физической информации, получаемой из разных источников;
- воспитание уважительного отношения к учёным и их открытиям, чувства гордости за российскую физическую науку.

Особенность целеполагания для базового уровня состоит в том, что обучение ориентировано в основном на формирование у обучающихся общей культуры и научного мировоззрения, на использование полученных знаний и умений в повседневной жизни.

Содержание курса физики в программе среднего общего образования структурируется на основе физических теорий и включает следующие разделы: научный метод познания природы, механика, молекулярная физика и термодинамика, электродинамика, колебания и волны, оптика, специальная теория относительности, квантовая физика, строение Вселенной..

Достижение этих целей обеспечивается решением следующих задач:

- формирования основ научного мировоззрения;
- развития интеллектуальных способностей учащихся;

- развитие познавательных интересов школьников в процессе изучения физики;
 - знакомство с методами научного познания окружающего мира;
- постановка проблем, требующих от учащихся самостоятельной деятельности по их разрешению;
- вооружение школьника научным методом познания, позволяющим получать объективные знания об окружающем мире.

Результаты освоения курса физики

Деятельность образовательной организации общего образования при обучении физике в средней школе должна быть направлена на достижение обучающимися следующих личностных результатов:

- умение управлять своей познавательной деятельностью;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- умение сотрудничать со взрослым, сверстниками, детьми младшего возраста в образовательной, учебно-исследовательской, проектной и других видах деятельности;
- сформированность мировоззрения, соответствующего современному уровню развития науки; осознание значимости науки, владения достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки; заинтересованность в научных знаниях об устройстве мира и общества; готовность к научно-техническому творчеству;
 - чувство гордости за российскую физическую науку, гуманизм;
 - положительное отношение к труду, целеустремлённость;
- экологическая культура, бережное отношение к родной земле, природным богатствам России и мира, понимание ответственности за состояние природных ресурсов и разумное природопользование.

Метапредметными результатами освоения выпускниками средней школы программы по физике являются:

- 1) освоение регулятивных универсальных учебных действий:
- самостоятельно определять цели, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной ранее цели;
- сопоставлять имеющиеся возможности и необходимые для достижения цели ресурсы;
 - определять несколько путей достижения поставленной цели;
- задавать параметры и критерии, по которым можно определить, что цель достигнута;

- сопоставлять полученный результат деятельности с поставленной заранее целью;
- осознавать последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей;
 - 2) освоение познавательных универсальных учебных действий:
- критически оценивать и интерпретировать информацию с разных позиций;
- распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления выявленных в информационных источниках противоречий;
- осуществлять развёрнутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
 - искать и находить обобщённые способы решения задач;
- приводить критические аргументы как в отношении собственного суждения, так и в отношении действий и суждений другого человека;
- анализировать и преобразовывать проблемно-противоречивые ситуации;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможности широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
- занимать разные позиции в познавательной деятельности (быть учеником и учителем; формулировать образовательный запрос и выполнять консультативные функции самостоятельно; ставить проблему и работать над её решением; управлять совместной познавательной деятельностью и подчиняться);
 - 3) освоение коммуникативных универсальных учебных действий:
- осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за её пределами);
- при осуществлении групповой работы быть как руководителем, так и членом проектной команды в разных ролях (генератором идей, критиком, исполнителем, презентующим и т. д.);
- развёрнуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
- распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы;
- согласовывать позиции членов команды в процессе работы над общим продуктом/решением;
- представлять публично результаты индивидуальной и групповой деятельности как перед знакомой, так и перед незнакомой аудиторией;

- подбирать партнёров для деловой коммуникации, исходя из соображений результативности взаимодействия, а не личных симпатий;
- воспринимать критические замечания как ресурс собственного развития;
- точно и ёмко формулировать как критические, так и одобрительные замечания в адрес других людей в рамках деловой и образовательной коммуникации, избегая при этом личностных оценочных суждений.

Предметными результами освоения выпускниками средней школы программы по физике на базовом уровне являются:

сформированность представлений о закономерной связи и познаваемости явлений природы, об объективности научного знания, о роли и месте физики в современной научной картине мира; понимание роли физики в формировании кругозора и функциональной грамотности человека для решения практических задач;

владение основополагающими физическими понятиями, закономерностями, законами и теориями; уверенное пользование физической терминологией и символикой;

сформированность представлений о физической сущности явлений природы (механических, тепловых, электромагнитных и квантовых), видах материи (вещество и поле), движении как способе существования материи; усвоение основных идей механики, атомно-молекулярного учения о строении вещества, элементов электродинамики и квантовой физики; овладение понятийным аппаратом и символическим языком физики;

владение основными методами научного познания, используемыми в физике: наблюдение, описание, измерение, эксперимент; владение умениями обрабатывать результаты измерений, обнаруживать зависимость между физическими величинами, объяснять полученные результаты и делать выводы;

владение умениями выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов, проверять их экспериментальными средствами, формулируя цель исследования; владение умениями описывать и объяснять самостоятельно проведённые эксперименты, анализировать результаты полученной из экспериментов информации, определять достоверность полученного результата;

умение решать простые физические задачи;

сформированность умения применять полученные знания для объяснения условий протекания физических явлений в природе и для принятия практических решений в повседневной жизни;

понимание физических основ и принципов действия (работы) машин и механизмов, средств передвижения и связи, бытовых приборов, промышленных технологических процессов, влияния их на окружающую среду; осознание возможных причин техногенных и экологических катастроф;

сформированность собственной позиции по отношению к физической информации, получаемой из разных источников.

Планируемые результаты Механические явления

Выпускник научится:

- распознавать механические явления и объяснять на имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и неравномерное движение, равномерное и равноускоренное прямолинейное движение, относительность механического свободное падение тел, равномерное движение по окружности, инерция, взаимодействие тел, реактивное движение, передача давления твердыми жидкостями и газами, атмосферное давление, плавание тел, телами, равновесие твердых тел, имеющих закрепленную ось вращения, колебательное движение, резонанс, волновое движение (звук);
- описывать изученные свойства тел и механические явления, используя физические величины: путь, перемещение, скорость, ускорение, период обращения, масса тела, плотность вещества, сила (сила тяжести, сила упругости, сила трения), давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД при совершении работы с использованием простого механизма, сила трения, амплитуда, период и частота колебаний, длина волны и скорость ее распространения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать свойства тел, механические явления и процессы, используя физические законы: закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил (нахождение равнодействующей силы), І, ІІ и ІІІ законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение;
- различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчета;
- решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, І, ІІ и ІІІ законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения скольжения, коэффициент трения, амплитуда, период и частота колебаний, длина волны и скорость ее распространения): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Выпускник получит возможность научиться:

- использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры практического использования физических знаний о механических явлениях и физических законах; примеры использования возобновляемых источников энергии; экологических последствий исследования космического пространств;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии, закон сохранения импульса, закон всемирного тяготения) и ограниченность использования частных законов (закон Гука, Архимеда и др.);
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний по механике с использованием математического аппарата, так и при помощи методов оценки.

Тепловые явления

Выпускник научится:

- распознавать тепловые явления и объяснять на базе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объема тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи (теплопроводность, конвекция, излучение), агрегатные состояния вещества, поглощение энергии при испарении жидкости и выделение ее при конденсации пара, зависимость температуры кипения от давления;
- описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внутренняя энергия, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать свойства тел, тепловые явления и процессы, используя основные положения атомно-молекулярного учения о строении вещества и закон сохранения энергии;
- различать основные признаки изученных физических моделей строения газов, жидкостей и твердых тел;
- приводить примеры практического использования физических знаний о тепловых явлениях;
 - решать задачи, используя закон сохранения энергии в тепловых

процессах и формулы, связывающие физические величины (количество теплоты, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Выпускник получит возможность научиться:

- использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры экологических последствий работы двигателей внутреннего сгорания, тепловых и гидроэлектростанций;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата, так и при помощи методов оценки.

Электрические и магнитные явления Выпускник научится:

- распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, электрический ток и его действия (тепловое, химическое, магнитное), взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током и на движущуюся заряженную частицу, действие электрического поля на заряженную частицу, электромагнитные волны, прямолинейное распространение света, отражение и преломление света, дисперсия света.
- составлять схемы электрических цепей с последовательным и параллельным соединением элементов, различая условные обозначения элементов электрических цепей (источник тока, ключ, резистор, реостат, лампочка, амперметр, вольтметр).
- использовать оптические схемы для построения изображений в плоском зеркале и собирающей линзе.
- описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света; при описании верно трактовать физический

смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами.

- анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение.
- приводить примеры практического использования физических знаний о электромагнитных явлениях
- решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света, формулы расчета электрического сопротивления припоследовательномипараллельном соединении проводников): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Выпускник получит возможность научиться:

- использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры влияния электромагнитных излучений на живые организмы;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля-Ленца и др.);
- использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата, так и при помощи методов оценки.

Квантовые явления

Выпускник научится:

• распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная

и искусственная радиоактивность, α -, β - и γ -излучения, возникновение линейчатого спектра излучения атома;

- описывать изученные квантовые явления, используя физические величины: массовое число, зарядовое число, период полураспада, энергия фотонов; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом, при этом различать словесную формулировку закона и его математическое выражение;
- различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;
- приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, спектрального анализа.

Выпускник получит возможность научиться:

- использовать полученные знания в повседневной жизни при обращении с приборами и техническими устройствами (счетчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
 - соотносить энергию связи атомных ядер с дефектом массы;
- приводить примеры влияния радиоактивных излучений на живые организмы; понимать принцип действия дозиметра и различать условия его использования;
- понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза.

Элементы астрономии

Выпускник научится:

- указывать названия планет Солнечной системы; различать основные признаки суточного вращения звездного неба, движения Луны, Солнца и планет относительно звезд;
- понимать различия между гелиоцентрической и геоцентрической системами мира;

Выпускник получит возможность научиться:

- указывать общие свойства и отличия планет земной группы и планет-гигантов; малых тел Солнечной системы и больших планет; пользоваться картой звездного неба при наблюдениях звездного неба;
- различать основные характеристики звезд (размер, цвет, температура) соотносить цвет звезды с ее температурой;
 - различать гипотезы о происхождении Солнечной системы.

Содержание

Физика и естественно-научный метод познания природы

Физика — фундаментальная наука о природе. Научный метод познания.

Методы исследования физических явлений. Моделирование физических явлений и процессов. Научные факты и гипотезы. Физические законы и границы их применимости. Физические теории и принцип соответствия. Физические величины. Погрешности измерений физических величин. Роль и место физики в формировании современной научной картины мира, в практической деятельности людей. Физика и культура.

Механика

Границы применимости классической механики. Пространство и время. Относительность механического движения. Системы отсчёта. Скалярные и векторные физические величины. Траектория. Путь. Перемещение. Скорость. Ускорение. Равномерное и равноускоренное прямолинейное движение. Равномерное движение по окружности.

Взаимодействие тел. Явление инерции. Сила. Масса. Инерциальные системы отсчёта. Законы динамики Ньютона. Сила тяжести, вес, невесомость. Силы упругости, силы трения. Законы: всемирного тяготения, Гука, трения. Использование законов механики для объяснения движения небесных тел и для развития космических исследований.

Импульс материальной точки и системы. Импульс силы. Закон сохранения импульса. Механическая работа. Мощность. Механическая энергия материальной точки и системы. Закон сохранения механической энергии. Работа силы тяжести и силы упругости.

Равновесие материальной точки и твёрдого тела. Момент силы. Условия равновесия. Равновесие жидкости и газа. Давление. Движение жидкости.

Молекулярная физика и термодинамика

Молекулярно-кинетическая теория (МКТ) строения вещества и её экспериментальные доказательства. Тепловое равновесие. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества. Модель идеального газа. Давление газа. Уравнение состояния идеального газа. Уравнение Менделеева—Клапейрона. Газовые законы.

Агрегатные состояния вещества. Взаимные превращения жидкости и газа. Влажность воздуха. Модель строения жидкостей. Поверхностное натяжение. Кристаллические и аморфные тела.

Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии. Уравнение теплового баланса. Первый закон термодинамики. Необратимость тепловых процессов. Принципы действия и КПД тепловых машин.

Основы электродинамики

Электрические заряды. Закон сохранения электрического заряда. Закон Кулона.

Электрическое поле. Напряжённость и потенциал электростатического поля. Линии напряжённости и эквипотенциальные поверхности. Принцип суперпозиции полей. Проводники и диэлектрики в электрическом поле. Электроёмкость. Конденсатор.

Постоянный электрический ток. Сила тока. Сопротивление. Последовательное и параллельное соединение проводников. Закон Джоуля—Ленца. Электродвижущая сила. Закон Ома для полной цепи. Электрический ток в проводниках, электролитах, полупроводниках, газах и вакууме. Сверхпроводимость.

Магнитное поле. Вектор индукции магнитного поля. Действие магнитного поля на проводник с током и движущуюся заряженную частицу. Сила Ампера и сила Лоренца. Магнитные свойства вещества.

Явление электромагнитной индукции. Магнитный поток. Правило Ленца. Закон электромагнитной индукции. Явление самоиндукции. Индуктивность. Электромагнитное поле. Энергия электромагнитного поля.

Колебания и волны

Механические колебания. Гармонические колебания. Свободные, затухающие, вынужденные колебания. Превращения энергии при колебаниях. Резонанс.

Электромагнитные колебания. Колебательный контур. Переменный электрический ток. Резонанс в электрической цепи. Короткое замыкание.

Механические волны. Продольные и поперечные волны. Скорость и длина волны. Интерференция и дифракция. Энергия волны. Звуковые волны.

Электромагнитные волны. Свойства электромагнитных волн Диапазоны электромагнитных излучений и их практическое применение.

Оптика

Геометрическая оптика. Скорость света. Законы отражения и преломления света. Формула тонкой линзы. Волновые свойства света: дисперсия, интерференция, дифракция, поляризация.

Основы специальной теории относительности

Постулаты теории относительности и следствия из них. Инвариантность модуля скорости света в вакууме. Энергия покоя. Связь массы и энергии свободной частицы.

Квантовая физика. Физика атома и атомного ядра

Гипотеза М. Планка. Фотоэлектрический эффект. Опыты Столетова. Законы фотоэффекта. Уравнение Эйнштейна. Фотон. Корпускулярноволновой дуализм. Соотношение неопределённостей Гейзенберга.

Планетарная модель атома. Объяснение линейчатого спектра водорода на основе квантовых постулатов Бора.

Состав и строение атомных ядер. Энергия связи атомных ядер. Виды радиоактивных превращений атомных ядер. Закон радиоактивного распада.

Ядерные реакции. Цепная реакция деления ядер. Применение ядерной энергии.

Элементарные частицы. Фундаментальные взаимодействия.

Строение Вселенной

Солнечная система: планеты и малые тела, система Земля—Луна. Строение и эволюция Солнца и звёзд. Классификация звёзд. Звёзды и источники их энергии.

Галактика. Современные представления о строении и эволюции Вселенной.

Примерный перечень практических и лабораторных работ

Прямые измерения:

- измерение мгновенной скорости с использованием секундомера или компьютера с датчиками;
 - сравнение масс (по взаимодействию);
 - измерение сил в механике;
- измерение температуры жидкостными и цифровыми термометрами;
 - оценка сил взаимодействия молекул (методом отрыва капель);
- экспериментальная проверка закона Гей-Люссака (измерение термодинамических параметров газа);
 - измерение ЭДС источника тока;
- определение периода обращения двойных звёзд (по печатным материалам).

Косвенные измерения:

- измерение ускорения;
- измерение ускорения свободного падения;
- определение энергии и импульса по тормозному пути;
- измерение удельной теплоты плавления льда;
- измерение напряжённости вихревого электрического поля (при наблюдении электромагнитной индукции);
 - измерение внутреннего сопротивления источника тока;
 - определение показателя преломления среды;
- измерение фокусного расстояния собирающей и рассеивающей линз;
 - определение длины световой волны;
 - оценка информационной ёмкости компакт-диска (CD);
- определение импульса и энергии частицы при движении в магнитном поле (по фотографиям).

Наблюдения:

- наблюдение механических явлений в инерциальных и неинерциальных системах отсчёта;
 - наблюдение вынужденных колебаний и резонанса;
 - наблюдение диффузии;
 - наблюдение явления электромагнитной индукции;
- наблюдение волновых свойств света: дифракции, интерференции, поляризации;
 - наблюдение спектров;
- вечерние наблюдения звёзд, Луны и планет в телескоп или бинокль.

Исследования:

- исследование равноускоренного движения с использованием электронного секундомера или компьютера с датчиками;
 - исследование движения тела, брошенного горизонтально;
 - исследование центрального удара;
 - исследование качения цилиндра по наклонной плоскости;
- исследование движения броуновской частицы (по трекам Перрена);
 - исследование изопроцессов;
 - исследование изохорного процесса и оценка абсолютного нуля;
 - исследование остывания воды;
- исследование зависимости напряжения на полюсах источника тока от силы тока в цепи;
- исследование зависимости силы тока через лампочку от напряжения на ней;
- исследование нагревания воды нагревателем небольшой мощности;
 - исследование явления электромагнитной индукции;
 - исследование зависимости угла преломления от угла падения;
- исследование зависимости расстояния линзы до изображения от расстояния линзы до предмета;
 - исследование спектра водорода;
 - исследование движения двойных звёзд (по печатным материалам). Проверка гипотез:

при движении бруска по наклонной плоскости время перемещения на определённое расстояние тем больше, чем больше масса бруска;

при движении бруска по наклонной плоскости скорость прямо пропорциональна пути;

при затухании колебаний амплитуда обратно пропорциональна времени;

квадрат среднего перемещения броуновской частицы прямо пропорционален времени наблюдения (по трекам Перрена);

скорость остывания воды линейно зависит от времени остывания; напряжение при последовательном включении лампочки и резистора не равно сумме напряжений на лампочке и резисторе;

угол преломления прямо пропорционален углу падения; при плотном соединении двух линз их оптические силы складываются.

Учебно-методический комплекс:

Для учителя:

- 1. Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский / Под ред. Н.А.Парфентьевой, Физика. 11 класс. Базовый уровень.— М.: Просвещение, 2021.
- 2. Дидактические материалы Физика 11 класс / А.Е.Марон, Е.А.Марон. М.: Издательство «Дрофа», 2014.
- 3. Тематические контрольные и самостоятельные работы по физике 11 класс / О.И.Громцева. М.: Издательство «Экзамен», 2012 г.
- 4. Задания образовательного портала Решу ЕГЭ
- 5. Сборник заданий и самостоятельных работ « Физика 10», Л.А. Кирик, Ю.И.Дик- М.: Илекса 2012г

Для учащихся:

1. Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский / Под ред. Н.А.Парфентьевой, Физика. 11 класс. Базовый уровень. – М.: Просвещение, 2021.

Интернет-ресурсы

- 1. Российская электронная школа (РЭШ)
- 2. ЯКласс

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ11 КЛАСС

3 C /	Наименование разделов и тем программы	Количество часов			
№ п/п		Всего	Контрольные работы	Практические работы	
Раздел	1. ЭЛЕКТРОДИНАМИКА				
1.1	Магнитное поле. Электромагнитная индукция	11	2	2	
Итого п	то разделу	11			
Раздел	2. КОЛЕБАНИЯ И ВОЛНЫ				
2.1	Механические и электромагнитные колебания	9		1	
2.2	Механические и электромагнитные волны	5	1		
2.3	Оптика	10		3	
Итого п	по разделу	24			
Раздел	3. ОСНОВЫ СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНО	СИТЕЛЬНО	СТИ		
3.1	Основы специальной теории относительности	4	1		
Итого п	по разделу	4			
Раздел	4. КВАНТОВАЯ ФИЗИКА				
4.1	Элементы квантовой оптики	6			
4.2	Строение атома	4			
4.3	Атомное ядро	5			
Итого п	по разделу	15			
Раздел	5. ЭЛЕМЕНТЫ АСТРОНОМИИ И АСТРОФИЗ	ВИКИ			
5.1	Элементы астрономии и астрофизики	7	1		

Итого п	о разделу	7		
Раздел	6. ОБОБЩАЮЩЕЕ ПОВТОРЕНИЕ			
6.1	Обобщающее повторение	4		
Итого п	о разделу	4		
Резервн	ое время	3		
ОБЩЕЕ	Е КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ	68	5	6

ПОУРОЧНОЕ ПЛАНИРОВАНИЕ 11 КЛАСС

No	Тема урока	Количество часов				Пото
№ п/п		Всего	Контрольн ые работы	Практические работы	Дата изучения	Дата фактич
1	Постоянные магниты и их взаимодействие. Магнитное поле. Вектор магнитной индукции. Линии магнитной индукции	1				
2	Магнитное поле проводника с током. Опыт Эрстеда. Взаимодействие проводников с током	1				
3	Лабораторная работа «Изучение магнитного поля катушки с током»	1		1		
4	Действие магнитного поля на проводник с током. Сила Ампера. Входной контроль	1	1			
5	Действие магнитного поля на движущуюся заряженную частицу. Сила Лоренца. Работа силы Лоренца	1				
6	Электромагнитная индукция. Поток вектора магнитной индукции. ЭДС индукции. Закон электромагнитной индукции Фарадея	1				
7	Лабораторная работа «Исследование явления электромагнитной индукции»	1		1		
8	Индуктивность. Явление самоиндукции. ЭДС самоиндукции. Энергия магнитного поля катушки с током. Электромагнитное поле	1				
9	Технические устройства и их применение: постоянные магниты, электромагниты,	1				

	электродвигатель, ускорители элементарных частиц,		
	индукционная печь		
10	Обобщающий урок «Магнитное поле.		
10	Электромагнитная индукция»	1	
	Контрольная работа по теме «Магнитное поле.		
11	Электромагнитная индукция»	1 1	
	Свободные механические колебания. Гармонические		
12	колебания. Уравнение гармонических колебаний.	1	
12	Превращение энергии	1	
	* * *		
	Лабораторная работа «Исследование зависимости		
13	периода малых колебаний груза на нити от длины	1 1	
	нити и массы груза»		
	Колебательный контур. Свободные		
14	электромагнитные колебания в идеальном	1	
14	колебательном контуре. Аналогия между		
	механическими и электромагнитными колебаниями		
	Формула Томсона. Закон сохранения энергии в		
15	идеальном колебательном контуре	1	
	Представление о затухающих колебаниях.		
16	Вынужденные механические колебания. Резонанс.	1	
	Вынужденные электромагнитные колебания		
	Переменный ток. Синусоидальный переменный ток.		
17	Мощность переменного тока. Амплитудное и	1	
1/	-	1	
	действующее значение силы тока и напряжения		
18	Трансформатор. Производство, передача и	1	
	потребление электрической энергии		

19	Устройство и практическое применение электрического звонка, генератора переменного тока, линий электропередач	1	
20	Экологические риски при производстве электроэнергии. Культура использования электроэнергии в повседневной жизни	1	
21	Механические волны, условия распространения. Период. Скорость распространения и длина волны. Поперечные и продольные волны	1	
22	Звук. Скорость звука. Громкость звука. Высота тона. Тембр звука	1	
23	Электромагнитные волны, их свойства и скорость. Шкала электромагнитных волн	1	
24	Принципы радиосвязи и телевидения. Развитие средств связи. Радиолокация	1	
25	Контрольная работа «Колебания и волны»	1 1	
26	Прямолинейное распространение света в однородной среде. Точечный источник света. Луч света	1	
27	Отражение света. Законы отражения света. Построение изображений в плоском зеркале	1	
28	Преломление света. Полное внутреннее отражение. Предельный угол полного внутреннего отражения	1	
29	Лабораторная работа «Измерение показателя преломления стекла»	1 1	
30	Линзы. Построение изображений в линзе. Формула тонкой линзы. Увеличение линзы	1	
31	Лабораторная работа «Исследование свойств изображений в линзах»	1 1	

32	Дисперсия света. Сложный состав белого света. Цвет.	1 1	
	Лабораторная работа «Наблюдение дисперсии света»		
33	Интерференция света. Дифракция света. Дифракционная решётка	1	
34	Поперечность световых волн. Поляризация света	1	
35	Оптические приборы и устройства и условия их безопасного применения	1	
36	Границы применимости классической механики. Постулаты специальной теории относительности	1	
37	Относительность одновременности. Замедление времени и сокращение длины	1	
38	Энергия и импульс релятивистской частицы. Связь массы с энергией и импульсом. Энергия покоя	1	
39	Контрольная работа «Оптика. Основы специальной теории относительности»	1 1	
40	Фотоны. Формула Планка. Энергия и импульс фотона	1	
41	Открытие и исследование фотоэффекта. Опыты А. Г. Столетова	1	
42	Законы фотоэффекта. Уравнение Эйнштейна для фотоэффекта. «Красная граница» фотоэффекта	1	
43	Давление света. Опыты П. Н. Лебедева. Химическое действие света	1	
44	Технические устройства и практическое применение: фотоэлемент, фотодатчик, солнечная батарея, светодиод	1	
45	Решение задач по теме «Элементы квантовой оптики»	1	
46	Модель атома Томсона. Опыты Резерфорда по рассеянию α-частиц. Планетарная модель атома	1	

47	Постулаты Бора	1	
48	Излучение и поглощение фотонов при переходе атома с одного уровня энергии на другой. Виды спектров	1	
49	Волновые свойства частиц. Волны де Бройля. Корпускулярно-волновой дуализм. Спонтанное и вынужденное излучение	1	
50	Открытие радиоактивности. Опыты Резерфорда по определению состава радиоактивного излучения	1	
51	Свойства альфа-, бета-, гамма-излучения. Влияние радиоактивности на живые организмы	1	
52	Открытие протона и нейтрона. Изотопы. Альфараспад. Электронный и позитронный бета-распад. Гамма-излучение	1	
53	Энергия связи нуклонов в ядре. Ядерные реакции. Ядерный реактор. Проблемы, перспективы, экологические аспекты ядерной энергетики	1	
54	Элементарные частицы. Открытие позитрона. Методы наблюдения и регистрации элементарных частиц.	1	
55	Вид звёздного неба. Созвездия, яркие звёзды, планеты, их видимое движение. Солнечная система	1	
56	Солнце. Солнечная активность. Источник энергии Солнца и звёзд	1	
57	Звёзды, их основные характеристики. Звёзды главной последовательности. Внутреннее строение звёзд. Современные представления о происхождении и эволюции Солнца и звёзд	1	

58	Млечный Путь — наша Галактика. Положение и движение Солнца в Галактике. Галактики. Чёрные дыры в ядрах галактик	1			
59	Вселенная. Разбегание галактик. Теория Большого взрыва. Реликтовое излучение. Метагалактика	1			
60	Нерешенные проблемы астрономии	1			
61	Контрольная работа «Элементы астрономии и астрофизики»	1	1		
62	Обобщающий урок. Роль физики и астрономии в экономической, технологической, социальной и этической сферах деятельности человека	1			
63	Обобщающий урок. Роль физической теории в формировании представлений о физической картине мира	1			
64	Обобщающий урок. Место физической картины мира в общем ряду современных естественнонаучных представлений о природе	1			
65	Промежуточная аттестация за курс 11 класса по физике	1	1		
66	Резервный урок. Магнитное поле. Электромагнитная индукция	1			
67	Резервный урок. Оптика. Основы специальной теории относительности	1			
68	Резерный урок. Квантовая физика. Элементы астрономии и астрофизики	1			
ОБЩ	ЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ	68	6	6	